1. Y.L. Chen, X. Liu, S.Y. Li, J.J. Li, M.Y. Fan, S. Shu*. Crystalline-Amorphous Heterostructures with Built-lnElectric Fields Enhance the Tandem Electroreduction of Nitrate to Ammonia. Adv. Funct. Mater., 2025, 2. A.J. Li, Y.L. Chen, X. Liu, Y.H. Chu, J.J. Li, S. Shu*. Electrocatalytic reduction of nitrate in denitrification wastewater to ammonia: Electrode-electrolyte coupling to enhance the directed conversion performance. Fuel, 2025, 388, 134491. 3. S. Shu, Y.L. Chen, H.Y. Xiang, Y.H. Chu*. Selective Electroreduction of Nitrates to Ammonia by Enhanced Byproduct Conversion over a Tandem CuCo-NC Catalyst. Ind. Eng. Chem. Res., 2025, 64, 4342−4352. 4. S. Shu, X.Y. Tang, C.C. Huang, Y.N Liu, J.J. Li*. Tuning the Relative Binding Strengths of Reactants to Products on Shape-Controlled SrTiO3‐Supported Palladium for an Enhanced Electrocatalytic Hydrodechlorination. Ind. Eng. Chem. Res., 2024, 63, 7114−7122. 5. H.Y. Xiang, X.F. Yue, Y.H. Chu, S. Shu*. Rapid Fabrication of N‐, Cu‐, and Co-Doped Electrodes with Strong Electronic Coupling by Cold Plasma for Electrocatalytic Reduction of Nitrate to Ammonia. Inorg. Chem., 2024, 63, 19809−19818. 6. X.F. Yue, H.Y. Xiang, P. Zhang*, S. Shu*, Y.X. Zhao, J.C. Zhang, J.W. Liu, D.P. Yu. Cold plasma-induced N, Cu-doping on carbon paper for high-active catalytic electrode preparation. Plasma Processes Polym., 2024, 21, 2300140. 7. Y.L. Chen, S. Shu*, J.J. Li*, Synthesis of carbon-based catalysts with stability using Cu-BTC as precursor for electrocatalytic nitrate reduction. J. Taiwan Inst. Chem. E., 2024, 157, 105399. 8. K.W. Yin, Z.Q. Yan, N.J. Fang*, W.L. Yu, Y.H. Chu, S. Shu*, M.C. Xu. The Synergistic Effect of Surface Vacancies and Heterojunctions for Efficient Photocatalysis: A Review. Sep. Purif. Technol., 2023, 325, 124636. 9. Y.L. Chen, J.J. Li, G.M. Jiang, B. Xu, J.B. Zhang, H.W. Zhang, S. Shu*. Dual-ligand Cu-based MOFs for electrocatalytic reduction of NO3–. J. Environ. Chem. Eng., 2023, 11, 110472. 10. S. Shu, Y.Q. Huang, L.H. Zou, X.Y. Zhang, J.J. Li*. Mechanism of synergistic removal of NO and SO2 by sodium bicarbonate. RSC Adv., 2023, 13, 32589. 11. Y. Wang#, S. Shu#, M. Peng, L. Hu, X.S. Lv, Y. Shen, H.F. Gong, G.M. Jiang*, Dual-site electrocatalytic nitrate reduction to ammonia on oxygen vacancy-enriched and Pd-decorated MnO2 nanosheets. Nanoscale, 2021,13, 17504-17511. 12. S. Shu, P. Wang, X.J. Li, X.K. Shi, J.X. Li, Y.H. Chu*, F.S. Wei, F. Dong, G.M. Jiang*, Pd Nanoparticles on Defective Polymer Carbon Nitride: Enhanced Activity and Origin for Electrocatalytic Hydrodechlorination Reaction. Chinese. Chem. Lett., 2020, 31, 2762–2768. 13. K.F. Wang#, S. Shu#, M. Chen, J.X. Li, K. Zhou, J. Pan, X. Wang, X. Li, J. Sheng, F. Dong, G.M Jiang*. Pd-TiO2 Schottky heterojunction catalyst boost the electrocatalytic hydrodechlorination reaction. Chem. Eng. J., 2020, 381, 122673. 14. S. Shu, W.Y. Fu, P. Wang, W.L. Cen, Y.H. Chu*, F.S. Wei, X.M. Zhang, F. Dong, G.M. Jiang*. Electrocatalytic hydrodechlorination of 2,4-dichlorophenol over palladium nanoparticles: The critical role of hydroxyl group deprotonation. Appl. Catal. A-Gen., 2019, 583, 117146. 15. M. Chen#, S. Shu#, P. Wang, K.F. Wang, F. Dong, G.M. Jiang*. Activating palladium nanoparticles via a Mott-schottky heterojunction in electrocatalytic hydrodechlorination reaction. J. Hazard. Mater., 2019, 121876. 16. S. Shu, J. Guo*, J. Li, N. Fang, S. Yuan. The enhanced performance of Ti doped MnOx for the removal of NO with NH3. J. Taiwan Ins. Chem. E., 2019, 100, 168-177. 17. S. Shu, J.X. Guo*, J. Li, N.J. Fang, J.J. Li, S.D. Yuan*. Effect of post-treatment on the selective catalytic reduction of NO with NH3 over Mn3O4. Mater. Chem. Phys., 2019, 237, 121845. 18. S. Shu, J.X. Guo*, X.L. Liu, X.J. Wang, H.Q. Yin, D.M. Luo. Effects of pore sizes and oxygen-containing functional groups on desulfurization activity of Fe/NAC prepared by ultrasonic-assisted impregnation. Appl. Surf. Sci., 2016, 360, 684-692. |