1. Li, T.#; Zheng, X.#; Liu, X.; Zhang, H.; Grieneisen, M. L.; He, C.; Ji, M.; Zhan, Y.*; Yang, F. Enhancing space-based tracking of fossil fuel CO2 emissions via synergistic integration of OCO-2, OCO-3, and TROPOMI measurements. Environmental Science & Technology. 2025. 2. Zheng, X.#; Meng, H.#; Zhao, Z.; Liu, X.; Zhou, L.; Grieneisen, M. L.; Zhang, H.; Zhan, Y.*; Yang, F. Deep transfer learning for spatiotemporal mapping of PM2.5 nitrate across China: Addressing small data challenges in environmental machine learning. Journal of Hazardous Materials. 2025. 3. Tang, D.; Mi, T.; Zheng, X.; Yang, M.; Grieneisen, M. L.; Zhan, Y.*; Yang, F. Harmonizing low-cost and regulatory air quality monitoring networks with interpretable semi-supervised learning: Reducing exposure misclassification in underrepresented communities. Journal of Hazardous Materials. 2025. 4. Tang, D.; Zhan, Y.*; Yang, F. A review of machine learning for modeling air quality: Overlooked but important issues. Atmospheric Research. 2024. 5. Liu, X.; Pu, X.; Lu, C.; Zhang, H.; Li, T.; Grieneisen, M. L.; Li, J.; Ma, N.; Yan, C.; Zhan, Y.* Yang, F., Interpretable regional meteorological feature extraction enhances deep learning for extended 120-h PM2.5 forecasting. Journal of Cleaner Production. 2024. 6. Mi, T.; Tang, D.; Fu, J.; Zeng, W.; Grieneisen, M. L.; Zhou, Z.; Jia, F.; Yang, F.; Zhan, Y.* Data augmentation for bias correction in mapping PM2.5 based on satellite retrievals and ground observations. Geoscience Frontiers. 2024. 7. Meng, X.; Pang, K.; Zhan, Y.*; Wang, M.*; Li, W.; Wang, Y.; Zhang, J.; Xu, Y. Light-duty gasoline vehicle emission deterioration insights from large-scale inspection/maintenance data: The synergistic impact of usage characteristics. Environment International. 2024. 8. Li, W.#; Li, Y.#; Xu, W.; Chen, Z.; Gao, Y.; Liu, Z.; Li, Q.; Jiang, M.; Liu, H.; Luo, B.*; Zhan, Y.*; Dai, L.* Maternal PM2.5 exposure and hypospadias risk in Chinese offspring: Insights from a nationwide surveillance-based study. Journal of Hazardous Materials. 2024. 9. Zhao, Z.; Lu, Y.; Zhan, Y.*; Cheng,Y.; Yang, F.; Brook, J. R.; He, K. Long-term spatiotemporal variations in surface NO2 for Beijing reconstructed from surface data and satellite retrievals. Science of the Total Environment. 2023. 10. Fu, J.; Tang, D.; Grieneisen, M. L.; Yang, F.; Yang, J.; Wu, G.; Wang, C.; Zhan, Y.* A machine learning-based approach for fusing measurements from standard sites, low-cost sensors, and satellite retrievals: Application to NO2 pollution hotspot identification. Atmospheric Environment. 2023. 11. 陈玉敏; 魏阳; 常政威; 张凌浩; 刘洪利; 刘雪原; 曾文; 赵子翔; 李春圆; 米潭; 詹宇. *基于遥感数据和XGBoost算法的31个城市NO2、CO2浓度比率变化特征. 地球科学与环境学报. 2023. 12. He, C.#; Ji, M.#; Li, T.; Liu, X.; Tang, D.; Zhang, S.; Luo, Y.; Grieneisen, M. L.; Zhou, Z.; Zhan, Y.* Deriving full-coverage and fine-scale XCO2 across China based on OCO-2 satellite retrievals and CarbonTracker output. Geophysical Research Letters. 2022. 13. Wu, Y.; Di, B.; Luo, Y.; Grieneisen, M. L.; Zeng, W.; Zhang, S.; Deng, X.; Tang, Y.; Shi, G.; Yang, F.; Zhan, Y.* A robust approach to deriving long-term daily surface NO2 levels across China: Correction to substantial estimation bias in back-extrapolation. Environment International. 2021. 14. Zeng, W.#; Zhao, H.#; Liu, R.; Yan, W.; Qiu, Y.; Yang, F.; Shu, C.*; Zhan, Y.* Association between NO2 cumulative exposure and influenza prevalence in mountainous regions: A case study from southwest China. Environmental Research. 2020. 15. Liu, D.; Di, B.; Luo, Y.; Deng, X.; Zhang, H.; Yang, F.; Grieneisen, M. L.; Zhan, Y.* Estimating ground-level CO concentrations across China based on national monitoring network and MOPITT: Potentially overlooked CO hotspots in the Tibetan Plateau. Atmospheric Chemistry and Physics. 2019. 16. 汤宇磊; 杨复沫; 詹宇.* 四川盆地PM2.5与PM10高分辨率时空分布与关联分析. 中国环境科学. 2019. 17. Zhan, Y.; Luo, Y.; Deng, X.; Zhang, K.; Zhang, M.; Grieneisen, M. L.; Di, B.* Satellite-based estimates of daily NO2 exposure in China using hybrid random forest and spatiotemporal kriging model. Environmental Science & Technology. 2018. 18. Zhan, Y.; Luo, Y.; Deng, X.; Grieneisen, M. L.; Zhang, M.; Di, B.* Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environmental Pollution. 2018. 19. Zhan, Y.; Luo, Y.; Deng, X.; Chen, H.; Grieneisen, M. L.; Shen, X.; Zhu, L.*; Zhang, M.* Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm. Atmospheric Environment. 2017. 20. Zhan, Y.; Sun, J.; Luo, Y.; Pan, L.; Deng, X.; Wei, Z.; Zhu, L.* Estimating emissions and environmental fate of di-(2-ethylhexyl) phthalate in Yangtze River Delta, China: Application of inverse modeling. Environmental Science & Technology. 2016. |